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4 Study of the
Hydromagnetic Induction Equation

by

Donald E. Skabelund

Department of Physics
University of Utah
Salt Lake City, Utah

ABSTRACT

We consider the hydromagnetic induction equation for an
unbounded incompressible cosmic fluid of finite conductivity
and attempt to find solutions. A partial integration is
found possible in a linear velocity shear or when the magnetic
Reynolds number is large compared to unity. To complete
this integration or to integrate the induction equation when
there is no coupling between the components of the magnetic
field leads to the "substantial diffusion equation™. . The
integration of this equation is reduced to solving a
Fredholm integral equation. Several relations of general
Interest for a Lagrangian description of fluid flow are
obtained.
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I. Introduction

An analysis of dimensional relations in conducting
fluids (Elsasser, 1954) shows that Maxwellts equations for a
cosmic fluild can be written

V"E=‘g‘€B (1)

VzB=n (ExvxB .

\ is the fluid velocity, and the other symbols have their
usual meanings. Eliminating between these equations, we obtain

the hydromagnetic induction equation,

g%x VxvexB-v Vx VxB, (2)

where
v = (po)"t (3)

is the M"magnetic viscosity." We will assume throughout that
the fluld is unbounded, homogeneous, and incompressible. This
means that v 1s constant and

Vev = 0. (4)
We will further assume a stationary flow, i.e.
¥=0, V=wD. (5)

5% =
Our purpose in these pages will be to obtain integrals of the
induction equation under these and certain other conditions.
The problem will be treated as kinematical, with V¥ given,
Unless otherwise speciflied the coordinate system used 1is
carteslan and defined by the unit base vectors (€, €,, 65).
Scattered throughout the work are results of general interest
for a Lagrangian description of fluid flow. The most
Important of these are gathered in Appendix I.

On taking the divergence of (2) one obtains, since the

divergence of a curl is identically zero,
. 5 ,
E-EV-B =Q (8)

If at any time B vanishes everywhere in space, than at all times

VeB=0

it
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The usual proof of (7) given in textbooks on electrodynamics
does not include the induction current, = v xB. Equation (2)
may now be written in the more familiar form

gf =V5<M/Jc13+‘v'7213 s (8)

where use has been made of a familiar vector identity.

In seeking physically significant solutions of the
induction equation, the solenoidal character of B must be
kept constantly in mind. While it is true that any solution
of (2) is automatically divergence-free, this is not so for
solutions of (8). 1In fact taking the divergence of (8)
shows that

SV-B=v_V'V'B . (9)

Although its solutions are not generally divergence-free
their divergence, nevertheless, obeys a diffusion equation,
so that if initially divergence-free, they remain so. We
conclude that (8) 1is equivalent to (2) provided (7) is true
at t = 0,
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II. The Lagranglan viewpoint
When the fluid has infinite conductivity, so that
v = 0, (1-8) may be written
BBV, (1)

where d4/dt denotes the substantial derivative, 3/3t + V» V’,
of hydrodynamics. In writing (1) we have used the identity

Vx(azhb) =a(v.b) -b(V.-a) + (b.-v)a- (a-7)b (2)

and imposed the condition that V< B = 0. This has the form of
the Helmholtz vorticity equation of hydrodynamics, which
equation was integrated by Cauchy (Brand, 1947), using the
Lagrangian formulation of hydrodynamics. The integral

was rediscovered by Lundguist (1951 and 1952) and applied to
the hydromagnetic equation (1)

Let F=rr°,s (3)
designate the position of a fluid particle in terms of 1its
initial position, I°, and the time. The Cauchy-Lundquist
integral of (1) then is

B =(B°-v9t, (4)
where Vo stands for the operator with components a/axg,
andBo and B refer to the field measured at a particle when
its position is p° and I, respectively.
The importance of a Lagrangian description of the
fluid flow is at once apparent. The particle trajectories
are solutlons of the diffurential equation

H-v, (5)
and the initial position,l’o, enters Ey way of the constants
of integration. The solution of this equation has been

discussed in a previous report (Skabelund, 1955). We note that
if t is held fixed,

Ay >y
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so that 5x
dX. dX. A%, = |wed |dx%dx®dax®
1772703 53:'3 158"
in which 3x
19
J—-.&?&

is the Jacoblan or functional determinant of the transformation

r°->F(r°,t). But the volume is conserved in an incompressible

fluid, hence

J=1, (6)
It may be remarked that if 3"1 1s the Jacoblan of the inverse

transformatioql”%>r‘°(lh,t) then necessarily JJ~t= 1, and hence
ox;
-1 1%%1] _
J-—&E}—l. (7)

A verification of (4) bears out that one must deal
wlth differential operations cautiously on switching between an
Eulerian or field description and a Lagrangian or particle
formul_ation. For example, 1r B 1s expressed in Eulerlan
terms, i.e. if ¥ 1s a field variable, then

%%(]",t) means g§+ (V‘V)B 5 (8)

whereas if B i1s expressed in Lagrangian form, where } is a
particle trajectory, then ro and t are the independent

0 ‘ o] 0
%%B[r(r ’t)’t:] mesans %%<r)t) =§EB(K)“ . (9)

variables, and

dR/at as it appears in (1) refers to the substantial
derivative (8); but in verilfying (4) one must bear in mind
thatlB is now expressed in Lagrangian form, and (9) applies.
In component notation (4) reads

0 aXi {
By = B‘jB'f? , (4")
so that ‘ ‘
dBi = aBi = Bo d ?f—i' = Bo ?—V_:.i; (lO)
‘ °J

which 1s (1). Note that B
3/3t and a/ax3‘commute.

3 is Independent of t and that

o el
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Equation (1) is eguivalent to (1-8) with V=0 only if
its solutions are divergence-free, but the remarks previously
made concerning the divergence of solutions of (1-8) do not
hold for solutions of (1). In fact, speaking of B as a
solution of (1), we have

S(V-B) +(VV)V:.B) =0, (11)

rather than 3B/3t = 0, as (1-8) would imply. (11) follows
after taking the divergence of (1) and using (2) as well as
the identilty

Viga = Vg.a +g7-a . (12)

It must be established then that solution (4) is solenoidal.
The necessity of doing this has evidently been overlooked in
previous accounts of the Cauchy-Lundquist integral.

A well-known interpretation of (1) is that lines-of-
force of B are "embedded" in the fluid. With this geometrical
picture in mind it seems clear that no new lines are generated
during the course of the fluid's motion, so that divB if
initially zero would remain zero. Another way of lookingat
the problem is to note that (11) has the form of a first-order
wave equation, so that div propogates like a wave in an
inhomogeneous V-field (Skabelund, 1955). Thus div B ,
once gero, shoul’ remain zero.

Using (4') the divergence of (4) is

o} 2
aBi= 3B axi N Bo‘a xi (13)
OAy~ Xy 5xO J ax,ax°
J 177
o) 2
OB~ 3%
d + B? - o ’
axj axiaxJ

in which the first term on the right is the initial divergence.
In s emi-vector form,

V.B =V0 .BO_";BCS V' o)

ox

*

13’y
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The quantities V e al”/axg , which will alsd be encountered
in the following section, must now be evaluated. It is tempting
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to say that 2 o

o"x 3~x
i _ i _ 9 -

o o -
axkaxj axjaxk axj

This, however, is not true, for Xy is not an independent
variable and a/axk does not commute with a/ax3 ---g fact to
figure prominently in the next chapter.

To achieve the desired proof, we begin by writing

the iden‘tities axg axvo( axi .
Cpxﬁ = 5 o ° (14)
a::c‘3 axi axB

Thus for B = lowe have o
axl axl N axl ox . axl ax5 _
0 o
axl axll ax2 axl ax5 axl

A

o)
ax2 axl . ax2 ax2 . ax2 ax3 A (15)
° ax° 3 ax° -
axl axl ax2 xl x5 1
o o o]
0 O ¢
axl axl ax2 axl ax5 axl
Solving for axl/axi gives
ox
-1
== (V) < (V=] . (16)
axl 1

Solving for axz/axi and axs/axi and combining with the above
result gives

2k = (7)) (7). (17)
ox
1
Repeating these steps for the other two sets allows us to write
b, = (Vxg) =< (Vap = V< (xgVa)), (18)
axa

o et sy

gy

— e
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where (¢ ,8, X‘) is a cyclic permutation on (1,2,3). The last
form on the right follows because the curl of a gradient is
zero and, for any scalar and vectog goand a,

VfoCl= Vexa veVxa |, (19)
identically. Finally, because the divergence of a curl vanishes,

we conclude that

Ve 9!0 =0 , (20)

axd

Substitution of this result into (15’) reveals that

v.B=v°.B =0 , (21)

the last equality on making the initial field divergence-free.
Thie completes the proof that (4) is an integral of the
induction equation for infinite conductivity. Clearly (20)

is the Lagrangian equivalent of VeV = O, the Eulerian
statement of incompressibility.

T
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III. A Partial Integral of the Induction Eguation

a. Physical conslderation

.

In the absence of dissipation we have seen that (2-4)
is an integral of the induction equation. The form of (2-4)
implies that the fleld at any time 1s expressible in terms
of its initial configuration and the deformatlon of the fluld.
The physical reasons for this analytical form are clear if
we plcture the lines-of-force as being distorted when dragged
along with the fluid. If there 1s dlssipation we must
deal with the eguation .

B (V- IB= (B #vP®B
(1)

= (B-V)v +vP*R,

which is equivalent to (1-2) or (1-8) provided 1ts solution
1s divergence-free,

The preceding suggests that (1) might have an integral
of the form

_~
= (B * Vo) r: (2)

where Egis a function depending somehow on } and t. The
presence of a dissipative term in (1) means the lines-~of-force
now slip relative to the fluidy R, then, is no longer
expressible solely 1n terms of its initial configuration and
the fluid deformation, and B unlike B° R (Y So)must have the
more general form B V,5). Weexpect B to obey a diffusion-
like equation--~one which will reduce B to B( Y, when w=0.
Such an equation is

= A
B_ 2R ; (3)
for when v=0, dé/dt = 0, meaning that é is constant as one
moves with a fluid particle along a stream line, and hence

[5 IS( T°). That a solution (2 and 3) exists in certain
cases will now be verified,

LT
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The physical reasons for this analytical form are clear if
we plcture the lines-of-force as being distorted when dragged
along with the fluid. If there 1s dissipation we must
deal with the equation .

B (v VIB=(B-TV+vP2B
(1)

=(B'V)V+‘VV28,

which is equivalent to (1-2) or (1-8) provided its solution
is divergence-free,

The preceding suggests that (1) might have an integral
of the form

-~
= (B~ Vo) v, (2)
where Eiis a function depending somehow on | and t. The
presence of a dissipative term in (1) means the lines-of-force
now slip relative to the fluidy; R, then, is no longer
expressible solely in terms Jof 1ts initial configuration and
the fluid deformation, and B, unlike B°= B (Y $o)must have the
more general form B V,t). Weexpect E to obey a diffusion-
like equation---one which will reduce B to  JR( Y‘, when vw=0..
Such an equation is

ﬁ A

d 2

F=vV"B; (8)
A A

for when v=0, dB/dt = 0, meaning that B is constant as one

moves with a fluid particle along a stream line, and hence

15 ES( Y‘). ‘That a solution (2 and 3) exists in certain
cases will now be verified.
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b. The conditions for a particular integral
;~~é - Assuming (2) we have
dBi_dBj axi ~ 3 axi (4
A A I L )
but the axi/axj are expressed In Lagrangian terms so that
o a axi _ 3 axi _ avi (5)
;o T 5 T OSE Y T X
| Thus (4) becomes
< 4B, dB, ax, ov
i lem 1 (6)
. T~ J% 5‘3 3 axj

or in vector form

g'§= (‘é%. VoY « (ﬁ' vOwv. ()

Consider the guantity (B+ V)V 3 in component form we
have, using (2),

;;.jk‘ B.-:;Zi=§ Eicg;-ti=Bka—V§ (7)
J 3 kaxp OFj ax,
or A
/
(B-Viv=(B-v°v. (")
N
SinceIS is a solution of (3) by assumption, (6’) may be written
B (B Vrvay (VER-V° 8)
d - ’ V B )r, (
which has the form (1) except for the last term.
It remains to examine \728 , subject to (2). One
obtains o oA 2 3 (9)
37B. 8~B X aBk 37K 3 Xy
: Sox, = E'_gx —5 *2 g # By e
37735 37 oxy j axJaxk 9x jaxja‘xk
g 2 A ‘
or VEB = (V2B -V r+2A+C (o)
where and  have gompgnents 3
3B, 9%x a’x
k x5 2 1
MT S e T e e
X bs
37Tk 37Tk
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Finally, then, (2) is an integral of (1) with B sub ject

to (3) if and only if
A=C=0 . (11)

Since the partials with respect to the x, and x]?{ which appear
in Ay and ¢, do not commute, the conditions (1ll1l) will not, in
general, be met. In fact, these conditions will be found to be
very restrictive. Thils 1s not surprising, for according’to
(2), (9'), and (11), the quantity Y° R, which accounts for
the diffusion of B s will evolve in the same way as B itself,
Obviously, not many types of flow patterns will permit this.

It will be shown presently, however, that (1l) can be
satisfied under certain condlitions. Accepting this fact for
the moment, let us see what has been accomplished. The task

- of integrating (1) has been reduced to that of integrating the

auxiliary equation (3). The net effect of our efforts has
been to eliminate the term ( B V)WV from (1). This is a
considerable simplification, for in (1) the components of
B are coupled through the term ( B+ 7 )\. The set (1)
of three simultaneous eguations in all three Bi has been
reduced to the three independent equations of (3), in which
the B, are not coupled. In this respect (2) is a partial

integral of the induction equation. More precisely, this 1s

so provided 89 thus determined, has zero divergence.
From (2) we have

- 2
aBi _ EB“BJ ax.i N ﬁ 5] x4 h (12)
- p ° 3 ox ax° g
axi axi axJ 19%;5

however, it was established previously that, for an
incompressible flow,

-9]::0
9

0
ax
J

and hence,

V.B=V° B. (13)

It can be shown that for the types of fluld flow which
satisfy our criterion (1l1) N

v° «RB=01r V° B (7°,0) =0,

kit rebang s e e o

e
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and thus A
V-B =01 (V-B),_, = 0. (14)

This demonstration must await our discussion of equation (11l) of
Sece 9} however, rather than interrupt the argument there, the
proof is given in Appendix IV B. ~

As to the physical significance of fs, note from
(2) that for t =0

B(roo =B, ; (15)

A
thus B( v ,0) is the initial value of the field, B. tThe
equation (3) governing B is a diffusion equation for an
observer moving with the fluid. It may also be written

g.-t-Bﬁ-(v-V)‘E=v721§, (31)

which has the form of a wave equation with dissipation

(cﬁ: sec. 4 and Tech. Report 17 of the author). It describes
a Ignfield propagating in an inhomogeneous anisotropic
w-field and at the same time diffusing. Its solution will
be the subject of sec. 4.

c. Satisfying the conditions - Linear velocity sheap

Suppose that the streamlines are straight; we may
without loss of generality take them to be directed along
the Z-axis. It will further be supposed that \»does not
vary 1in this direction, i.e., we assume

V= v(x),%5) 82 . (16)
The Lagrangian trajec%ories are given by
dxl dx dx5
=% =Ygz -0 (17)
whose ssalutions are
o o o
X 7Ky Kg™Kg + VE, X7y s (18)

We have seen in the preceding section that a
partial integral of the form (2) exlsts only when the quantities

pe
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of (10) vanish. If we require the vanishing of these quantities
without placing any restrictions on the magnetic field, a
necessary and sufficient condition is that

' agxi
o = 0. (19)
. axjaxk
'By referring to (18) we see at once that
82x 32x 82x
1 . 2 o 3 . ,
.0 3x° - 5 =03 (20)
- axjaxk axj xk axjaxk
o | 2 o 2 e
It remains only to consider 3 xz/axjaxl and 3 xz/axjax3
i The first of these can be written
! !
. M
: 82x2 ax2 3%x*
—= == T - (21)
g axjaxl axj axjaxt

Now, the axg/ax. may be found at once from (18). In more

general cases, solving the Lagrangian trajectories for the

inverse functions xg = xg(xj,t) is no easy mattery still

’ the axg/axj can easily be found in terms of the axd/axg, i y
| once the latter are known---as they will be from the r

% N trajectories. This procedure will now be discussed because *i

of its importance to a general Lagrangian formulation, ‘

although as mentioned, it is not essential here. ' ﬂ
Return to equations (2-14) of sec. 25 if they are

viewed this time as comprising three sets of algebraic *

equations for the nine aix:()/ax‘3 in terms of the axx/axg, then

we have, on exchanglng the roles of Fand ¥° in (2-17),

o pe
AN s B e -

. <,
YW IR R L
A3
S

(0]
CLg (VOxp) >< (VOxy ), (22)

ax

il
A

where ( d,B,J’) is again a cyclic permutation on (1,2,3). 1
Using the above result, or proceding directly from

(18), shows that all the azxi/axjaxi are zero save fours:

82x2 _ a2y 82x2 _ agv i
et AP g a6 -
i: ?ff? = 2 = t.QEE_
;h axgaxi axlaxg axiaxg
L
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The restrictions imposed on the flow by (19) are that
82\;’ — 82v - 82V =0 (24)
3x0)?  maxd  a(x0)” ’
1 X19%3 X3
which have a solution
v = ax) + bxy +c . (25)

The equi-velocity surfaces are planes ax§‘+ bxg + ¢ = const.,
parallel to the streamlines. Thus v must change linearly in
a direction normal %o the flow (the 2-axis). We could just as
well take this direction to be the 1l- or 3- axis so that,
for example,

V= (ax; + b) €, , (26)

which represents a linear velocity shear in the 3-direction.
Many velocity fields will obey this condition locally, except
at points where |V | has extrema. Recall that B has not

been limited in any way. i

d. Approximate theory for large magnetic Reynolds numbers

The possibility of satisfying the conditions (11)
approxmately will now be considered. Suppose the larges of

the axi/axo

Kk has an order of magnitude J} we write

o S A (27)

O~
axk

Then, if A 1is the scale of the fluid motion and if the
motion is reasonably "smooth™,

2 3
o~x., 3°x
- o] S i and i fo) rg _O"gﬁ s (28)
axjaxk A axjaxjaxk A
whence
o= |c\~s~ﬁ‘£~ ) (29)
Y

,
—
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We need next to determine the order of the aﬁk/axj;- 1t 1is

not B/x, for the B-field has not necessarily diffused through
. a distance characterized by A. The ordinary diffusion equation,
' aB/at = v VzB, leads to a decay-time 7\2/\1, where A i3 a
1 length characteristic of the dimensions of the conductor. This
may be regarded as the time necessary for the field to diffuse
through a distance A. One may say that the field diffuses
P with a speed v/A. The equation (3) is interpreted to mean
; that the decay-time of thels -field for an observer moving
1. with the fluld is XZ/V, and the speed of diffusionrelative
§  to this observer 1s of the order

v v
= ’ (20)
X R,

where R 1is the magnetic Reynolds number (Elsasser, 1954).

L During the time a fluid particle has moved a distance comparable .
b to the scale of the velocity field, A, the B-field has diffused -
L through a distance

| ARV (31) .
i We see that A N A X
aBk ¢ B RmB |
3y~ ¢ 7‘2 (32) f
‘ 2 ~ AN f
RN |
& Xk P E
E whence also, AJ\
4 R B
- T m ;
: k=lAle 3
% )
L, 27 0 anag& (83)
(V2B 7O ¥ o Epm
A comparison of térms of the right of (9') gives

c ~o 1

(7R vy °

"o

(34)

1
(FEvr] T

.
=4

1 At e
-
e
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Hence, if the flow 1s reasonably smooth bothA and Cuay be
neglected in comparlson with the first term in (9')
provided
The divergence condition, (14)) is satisfied to the same order
of small quantities, as discussed in Appendix IV B.
‘I
.
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IV. The Substantial Diffusion Equation

8. Preliminaries; nature of the problem

: Suppose there is no Interaction between the components
. of B ; this means that (B+V )V = 0, and the induction
equation (3-1) is reduced to

%'g EB v = v
| (v.:V)B =vpP°B (1)

3 or %%§= v VZ.IS.

This 1s precisely the substantial diffusion equation encountered
in sec, 3. It arises, in three cases: it 1is the induction
equation when

) (B V)V =0 ; (2)

it 1s approximately the induction equation for large-scale
veloclity filelds, for when g varies slowly, that is when |

(B-V)ivez (V- V)B (3)

so that 1t may be dropped from equation (1-8); it is the
equation for @ in the partial integral of the complete
induction equation when neither (2) nor (3) is true.

‘ We propose in this section to obtain solutions of ;
(1)s The symbolB will be used throughout, with the b
understanding it may be replaced by ‘E when appropriate,
Whenever the solutions obtained are intenﬁled to represent
the complete magnetic field and not just 8 , they are >
3:' N subject to either (2) or (3), and this must be verified for
% particular solutions. The field 1s-continually spreading
;%’ ) both by diffusion and by its being (partially) dragged
% with the fluid. It is not difficult, however, to construct
k
3¢
5

special ¥ and B configurations which because of their
geometries satisfy (2) at all times, If (R+V)V 1is
merely small, initially, then (3) cannot hold indefinitely;

1 nevertheless, 1t should remain true for times of the order of
o
-
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the period of fluid motion, v/A. This is because in the
range of R, where both diffusion and induction are important,
the spreading effects of diffusion and "differential dragging"
tend to oppose one another. (This assertion is based on the
familiar "entropy™ arguments that the general effect of
diffusion is to smooth out inhomogeneities in the field---in
this case inhomogeneities caused by the fluld motion. See
also Inglis (1955) who cites an example to show the extent
to which magnetic field lines can be stretched by "dragging"
before their "slipping™ velocity relative to the fluid equals
the fluld velocity. TLundquist (1952) also glves an example,.
It has already been remarked that the substantial
diffusion equation may be regarded as a first-order wave
equation with dissipation. A closer examination, however,
reveals that (1) is an equation of the elliptic rather than
hyperbolic type (Sommerfeld, 1949, p. 38 ), and mathematically
it is more akin to a diffusion eguation than a wave eguation.
It is in this direction, therefore, that we look for a
solution. Physically the equation represents a combination
of propogation and diffusion in an inhomogeneous anisotropic
"medium"; consequently, it will not be surprising to find
its solution cumbersome.

b. The substantial diffusion equation as an inhomogeneous
diffusion equation

Trying to solve the equation, even for simple fluid
flows, dispels any notion of there existing bounded solutions
with variables separated. A Fourier analysis and an
application of the WKB approximation for slowly varying ¥
were also unsuccessful in obtaining physically meaningful
solutions.,

We therefore choose to look upon (1) as an inhomogeneous
diffusion equation,

2
VEB -1®-(¥.-v)B. (1)
From this point of view,PBhas "sources"‘—v'l(\I'V’)IS
which arise from its Interaction with the fluid.
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Using Green's function for the diffusion eguation one
can show that
1 5 /o
Bir,s) =" fottj.ds r'ect v'v) B |
ey (4)

+v"1fd6r’(e B

t+
o' (6 3B -B7E )
4 0 S

in whidnlzjj the field within a volume V bounded by a surface
Sy G( 7‘,t|'YVCt ) 1s the appropriate Green's function, \~’
and R’ denote \» ( p’,t’) and B Y”,t') respectively, and

t+ means t +£:2, £90. The details of this operation will be
found in Appendix II.

Assuming that G ~ /4 and B~ /for , at least, as
1} 1

the surface Integral vanishes as S receeds to infinity, and S

In the infinite domain

B(r,t) =- '1jdtf5Y G(v 74 B

(5)
fd r'e B)t,o .

A
It follows that

(v+* V)B

(6) .
R ™ b
+w a’ ¥ [} P F’G)ZB;L¥-0 ' : :

The last integral is a known function or rather functional,
in terms of B (1 ,0), which will be designated by

ljdt’fd*”;»'(v-vm (v 7i B’
[

Fep,s = v"lfd:" r'[v-VG( r.s] rho)B( rho. (7)
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Then (6) has the form of a Volterra-Fredholm equation for
( v ° V)BD ViZo (8)

t+
(W P)B=p,t) + fdt’fd"’r’ Kyt |rit' ) (vt 7Y B
whose kernel 1s °

K(P,t pht ) =" tvp) - el p 6| bt . (9)

At this point it becomes necessary to state something
more about the Greent's function. The appropriate Greent's
function for the infinite domain can be shown to be the
impulse function

G(R|T) = vU () (41tv2“)'n/2exp(-=R2/4VZV) (10)

R =|p- Pl T=t-t ,
where U is the unit step function

U(zv)i;:{o, T<¢0
‘ 1, T>0.
(Morse and Feshbach, 1953, p. 894) Certainly, then, our
assumption about the behavior of G at oo was justified,
Furthermore, since G=0 for all t’>t‘, the time integration in
(8) can equally well be extended over all t, so we may write

(11)

(Ve VOB=T( p ,t) *jdt’JdSr’ k(r,elP ey (v ) B,

which is an inhomogeneous Fredholme quation of the second
kind. The kernel is asymmetrice

g = Uz)Ve B exp(-R%/avy)
2v T (4mv T° ) n/2
R=r-r.

Fredholm e quations for a function of more than one

(12)

o —
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variable are seldom discussed in the textbooksy however, they
can be solved using étraightforward generalizations of the
standard methods used on equatilons for|a function of one
variable (Courant and Hilbert, 1953, page 152). One method
of solution is found in Appendix IV. PFinally, let

Fr.v) =(v:-7)B (13)

be the solution so obtained; then substitution into (5) gives

Bir,t) = -v'lfdt/fd:” rlecr,s]r! o) ¢ ¢ th
o

(14)
~1( .3 17 /
+v j‘d r Gl r’t/r )O)B(}"I’O) .
It is proved in Appendix IVA that
V B(p,t) = 0 provided P*B( p,0) =0 . (15)
ce The substantial diffusion equation reduced to an
inhomogeneous Helmholtz equation
Examination shows that there exist no physically
meaningful solutions of (1) with variables separated,
B, (P,t) = X, (%)%, (x5)%, (x,)7(t)
(no summation on greek indices). This, however, does not
preclude the existence of solutions composed of a sum of
terms, each term of which has variables separated. In an
effort, then, to find solutions of (1) less awkward than
(14) we look for solutions of the form
B, t) =jdkc()(t;0) F(rsx), (16)
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a superposition of terms with variables separated.
Then

vee- 8- (v.m)B

(17)
= gdk ) [ 20 VPF-(v- 7IF -FE ],
which vanishes if
G+ vi’r =0
(18)
pEF+ XF= vl (v-")F .
2
(18a) gives 7= e VKb 9 (19)

as usual.

The plan now is to look upon (18b) as an inhomogeneous
Helmholtz equation. Doing this one may show that

F(rsx) = nv'lfdsi‘,@(vl'V/)F'
Y

/
*f((} g{, -F’ g%/);dS' . (20)
S

The detalls of this operation are contained in Appendix IIT.
G 1s the Green's function for the Helmholtz equation and may
be taken as

c(P 1/ sx) = R texp(1kR) (21)

(Morse and Feshbach, 1953, p. 891). As S recedes to
infinity the surface integral vanishes if F goes at least as

r as r »°0. Assume this is so. In the infinite domain,
then,

Fry = ~v"1jd5r’e(r]r’;k>(v’-v’)F’ . (22)

This is a particular solution of (18b); to 1t we may add
any solution, Fﬂ of the homogenous Helmholtz equation,




R
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.22
\72;! + kgf-!' =0 . (23)

Doing this will guarantee our obtaining a solution Fﬂwith zZero
divergence (a subject discussed in Appendix IVC). We have now

Frsk) =F( % -t jdz’r’mrjr';k)(v’-v’)r’ . (24)
It follows at once that
v

(VePVF = (V-VIF “’-lfd'&r'(v~VG)(v"V')F’, (25)

which 1is an inhomogeneous Fredholm equation of the second
kind for (\y«WV)F', with the asymmetric kernel v ivere.,
It can be solved using extensions of standard methods. Let

Alrs &) = (v F (26)

be the solution so obtained} putting this into (24) gilves

v
F(P;k) = F(r;]:c)-v‘lj‘d5 Fotrrhso Acrio . (en)

The general (though not necessarily complete) solution
of (1) is

B(r,t) =Jdk ¢ (k) F( r ;k) exp(-vkgt). (28)

Furthermore,

B(r,0) =Ju<c(k> Fip;w, (29)

which is a Predholm equation of the first kind, with the

kernel F‘(I‘gk). Its solution (if one exists), obtained by
standard methods,; gives the spectrum function c¢(k) in terms
of the initial field ES()*,O). As to the divergence of 13 R

note that

V-8B =Jd/< c(k) (V. F)exp(-vkzt),

which vanishes identically only if kar= O. In Appendix IVC
it is demonstrated that

v
V-B=0 provideda V-F=0 . (30)
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The order of the definite Integrals involved has been
reduced by one by using thls quasi-separation of variables in
(16). It has been done, however, at the expense of assuming
that there exist sdlutions of (1) of the form (16) which are
regular at ooand which allow the spectrum function to be determined
through (29). Whether or not this 1s so must evidently be
decided in individual cases. In obtaining solution (14) 1its
form was in no wise restricted; hence there can be no doubt
that it vanishes at least as r'2 at infinity, whenever the
initial field is confined to a finite region(because from a
distance, then, the field appears to arise from multipole
sources).

It seems now natural to inquire if (1) could not be
treated as an Inhomogeneous wave equation to which the
familiar Kirchhoff method of integration might be sapplied.
This method is not applicable, it turns out, because of
the intrinsically anisotropic character of the propagation
which (1) describes.

de The solutions in Lagrangian form

Consider the subject of section 4a. Once the solution
@ of (11) is known one may proceed directly to findB in
Lagrangian form. Using (2-3), (2-5), and (13) we may write

H-vB=P, (51)

where the use of the total derivative means we are thinking
of q@ as expressed in terms of Lagrangian variables. Then,
sinceﬂd(f= dr. ch is the change in ?in the direction of d4dp,

aB=(ar-VIB =P[r(r°,e),t ] at (32)

glves the change in B arising from a displacement 4P along a
Lagrangian trajectory (and includes the effects of both time-
and space-changes). AS a result

%
Rir,t) =B(1°,0) + f@(zr°,t)dt . (33)
(o]

L. R e
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The Lagrangian and Eulerian formulations are merely different
ways of expressing the same thing, and because of this the
conclusion (15) about divB is still valid, and

. =01 PB(Pr°,0) =0 (34)

Although it 1s usually more convenient to have
solutions expressed in Eulerian terms, 1t may be desirable to
. settle for a Lagranglan form and thus avoid the complicated
o multiple integrations involved in (14).

The solution which 1s the subject of section 4c
may also be expressed in Lagrangian form, at a considerabls
saving of labor. From (26) we have ;

aF =@ar- VO F =A[riroe] at, (35)
*

and FW= F(r°) «+ J./\(]»O,t)dt . (36)

(4
Besides requiring that V-ﬁ =0, as in (30), it is
necessary to have

Ve F(p°) =o, (37)
because the term [ ( ro) is arbitrary as far as the Lagrangilan
integration is concerned.

. |
*:: \ e. The pure-diffusion solutions
%
We close this discussion with an account of one
i;, class of solutions of (1) available at once. This class is
& obtained by setting

3B 2

Tt =vV B
% (38)
( v . V )“ B - O 3

B obeys the conventional diffusion equation and in addition,
according to (38b), must not vary in the direction of /.
FProm (38) we see that V'B likewise obeys a diffusion equation
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so that
VeB=0 1f (V-B)yg =0 (29)
i Let
U (1) = ky, U0 =Ry (40)
be linearly independent (C7Ui X F7Ué # 0) and integrals of
»
f ip x\v=0 |, (41)

!f f This means the intersection of the surfaces defined by (40) falls
‘ along the streamlines; and if U, = KVUl x VU,, we have
(UI’UQ’UB) forming a system of curvilinear coordinates. As a
consequence (38b) is satisfied if

i

2
B =B (u,,u,5 =Y * F,,u,). (42)

. The solution of (38a) is now a question of separability. The
‘1.‘ . space part of the solution satisfied the vector Helmholtz‘equation,
: which for other than cartesian coordinates should be written

VxVxF=/(2F, -F =o. (43)

B e
i - - —

Its separability is essentially limited to six different
coordinate systems (Morse and Feshbach, 1953, p. 1767); viz. %
circular, elliptic, and parsasbolic cylinder coordinatesy ;
spherical and conical coordinates; and, of course,

rectangular coordinates. Thus equation (38) can be solved
simultaneously if the streamlines of VW coincide with one set
of coordinate lines for any of these six systems. If they
coincide, say, with the~ U;-lines (the lines on which U, and
U, are constant) then f = f7(Ul,U2) may be any divergence-free
solution of the two dimensional Helmholtz equation in Ul and
U2. The solution of (43) is completely treated elsewhere
(Morse and Feshbach, Vol, II, pp. 1762-1767). The simplest
exasmple that comes to mind is whers 5

V= ey end B=e" * Fixy,x)
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2 2
&’ 9
with (=, + & % kK5O)F =0, V-'F =o.
ax ox
2 3
These pure-diffusion and non-wave-like solutions are of

e e

limited physical interest. To require in addition that
(B+ V)WV =0 would be altogether too restrictives; hence
they are of interest not asAintegrals of the induction
equation, but as possible [ -fields, with PB given by (3-2),
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Appendix I  Results of General Interest for a Lagrangian
Degcription of Fluid Flow.

Let P° locate the initlal position of a point moving
with the fluid. Its position after a time t 1s given by the
trajectory ¥ = ' ( ¥ °,t), where V" is a solution of

ar-v, | (1)

\#being the fluid velocity. In the Lagrangian formulation

1° and t are the independent variables and 3/3t snd d/dt
commute with the 3/ax]s however, the 3/3x] and 3/3x do mot
commute, If operating on a functlon expressed in Eulerian
terms, then d F/dt means 3F/at + (M. V)F, the familiar
substantial derivativey but if operating on a function
expressed in Lagrangian terms, d F /dt means simply 3 Fq/Bt.

The following results hold.
Jg,-f°= (V°xg) x (.v°>c(;) = VOX(XBVOXJ) (2)
- g

where

is the Jacobian or functional determinant of the transormsation

7‘0‘9'}”(]”0,5), and ( d,ﬁ,df) is a cyelic permutation on
(1’.2,5)". If

o]
I (4)

=N

J

denotes the Jacobilan of the inverse transformation
Y>1°(7,t), then similarly
3713 = (7)) x (VX)) = Ux (x2 UX°) . (5)
axg E { B g

"When the flow is incompressible

Ve =0 (6)

T T e e g e e
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and J=1J =1, (7)

which means that o
VOQ.'_.r:VOogI = Q. (8)
o X
abci J
(8) is the Lagrangian equivalent of the Eulerian statement (6)
expressing incompressibility.

Equation (1) can be used in speclal c ases to derive
conservation theorems for I . Suppose %o denotes any linear
differential operator with terms in the a/ax‘;. Then, using
our commutation rules

a%o((or=xo\/,

and 1if L°y= ‘

we would have

;‘{;&or': gf‘xor‘:on

whence %or___ const. =X;°r° for any fluid particle. By
way of example, if in particular cases V° <V =0, it
follows that

Veer = V% T° =3,

For such purposes it may be convenient to express Vo Vv
in any of the equivalent forms

ov ax, dv o r

_._g‘ = .__g __i = __.o oni = Vvl O(ng) X (ng) H- so ey
axi axi a'xJ oxy

etce

Appendix II., Integration of the inhomogeneous diffusion equation

The substantial diffusion equation of sec. 4 is to be
written as

VEB - vt 3%3= v"l(v'-V\B (1)

and regarded as an Inhomogeneous diffusion equation. Let
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(1) be multiplied by a function G which i1s essentially an
integrating factor and remains to be determined. Then let the
quantities BVZG and v'lBaG/at be both added and subtracted on
the left. After rearranging terms and integrating there obtains

t+ &+ ) -
) ! ! ‘
fdt%s o VB Br] ﬁjdt}gr [Bv7 #]g Z_S,
b 0
v 4

'fdtf LB’BG ! --J— v“th/”T'G( vh v B . (2)

B¢ T“),t/ } and \p( T‘/,t ) are represented by B' and V/, and
t* means t %22, € >0y the volume V remains as yet arbitrary.

Now, let G(Tr,t ['r/,t/ ) be the response of the system
at ( r,t) to an instantaneous point source of unit strength
located at (’r;t'), l.e,,

v - - Jr- ) dos ;s (3)

and require that )
/ /
e(7,t) T,t) =0, 5<t (4)

(this is a causality statement, required by the unidirectionality
in time implicit in the diffusion egquation). It is a consequence
of these t wo conditions that

T
T, | Tt ) = ol -t |10, (5)
(See e.g. Morse and Feshbach, Vol. I., p. 858) which 1is a

statement of reciproclty and is rather obvious from physical
considerations. It follows that

i o
vervtEal firarh fe . (6)

.
3
by




. . A

1 it
£ P
| Returning to (2) and using this result gives 1
B .
3 | : * (s /
[dtfd"’r [7%e «v71E B’y = - Br,u. (7) |
A o ot g
I v
} ' As to the last integral on the left of (2), reverse the
| order of integration and obtain :
G : + !
L ¢ & 4
. : o U - TN AV - T N N N - S AN !
VT v = (e B) = v a7 [e(r, |7, IB(T,8)]
H ) 0
v 4 v
it But according to (4)
I+ ‘
(vt |T,tY) =0 (9) |
? (which was the reason for integrating to t+); hence, i
NS B R S /
) (8) =v fd’T‘(GB)L . (10) .
, ; | . Finally, we apply the symmetrical form of Greent's theorem %o t :
' the first integral in (2): f
: | ! T2 2 e
! ! pt
7 Jdtl a®r [G VB-B7 G]
0 + (11) o
vt B, , |
/ ) ‘ ! 1
=jdt ﬁG S AL C
s iy .
after which (2) becomes
+* (12)
, -1 ’ ) VNI B ’ )
B (Pr,t) = -v Jdt deT‘G( V°7)B + v-l ‘dBT(GB)‘t =0
i : 0
t* Y v
’
| !
‘ an' 3n
6 5
which 1s egquation (4-4).
(12) has a simple physical interpretation. The
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v contribution'm)IBfTom "sources" exterior to the region enclosed by

‘ S 1s expressed by the surface Integral., The contribution from |
within \/comes from an integration over a continuous distribution |
of sources having strengths «(\e V)B and B ( Y,0); the

f - latter are Ingtantaneous sources.

i The essential steps in this integration may be found in
] Morse and Feshbach(1953, pp. 859 ff.) or(l1955, Chap. VII).

" Appendix III., Integration of the Inhomogeneous Helmholtz
‘ Equation.

Equation (4-18b) reads

’ VEF +k°F = v (v- ") F, (1)

3 { a Hofhholtz equation with "sources"'-v'l('yf° V) F-. Let i
G be the response to a unit point source at 7", then f

| v+ k% =- dir- ). (2)

G may be used as an Integrating factor. Multiply (1) by G Ca
and (2) by F, subtract the two equations and integrate; 3
one obtalns §

SRR R

RN TR AR
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Yy 2
sz’r’( F'7' ¢ev F) (3)
v

- -sz’r' Jir- 1) F r’>.,v"1fd5rfgw’. 7AF' . | ;

On using Green's tbegrem in its symmetrical for;, ‘
Fr) = -yy-lder’GW{V’) F'

v +{~(( ngﬁ’“ ¢ @f3ds ' @

This is equation (4-20). N
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Appendix IV, On the Divergence of Solutions of the Substantial
Diffusion Egquation.

A. The substantlal diffusion equatlon, repeated from sec. 4 1is

Be(v -"B=vP?B, | (1)

A
in which the symbol Bmay represent B also, when appropriate.
From (2-2) and (2-12) we see that

Viv.-VB=VV(V:B)+V7- (B-VHv (@

Assume for the moment that

(B-V)W=0 or is negligible, (3)

which must be the case if B is an integral of the induction
equation, according to section 4a. On taking the dlvergence
of (1),

so that B and its divergence satisfy the same equation.
Let for a moment the symbol b represent both B and
aiv B . We then write

vzb-v'l%b= DEIAVERVAY 3 (5)

and discuss both relations simultaneously.

Suppose the ™source™ function on the right is
initlally zero, then momentarily (5) reduces to the homogeneous
diffusion equation,

oy s 3 2
5‘-56”' v V b’
which has solutions of the form

vk
b = & bt=0 .

-«w-»t‘-%ww‘..«»w%,u.v-.,_‘,.,,,i N 3
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If n_ow'%_ :‘—0; this suggests that the sources remsin zero. This
= Lomati

must certainly be true for physically meaningful solutions, B R

for the magnetlc fieldj if no magnetic fleld 1s present originally,

none can be generated spontaneously by the fluid motion.

To substantiate analytically this physical interpretation
of (5) one must inquire into the nature of the solutions p:“f‘ the
integral equation to which (5) leads. From (4-14) we hawve

bir,t = '“"-ljdf’w 7,0 T Ty
(6)
w-ljd‘"’ el 1,5l oy berlo)

/ / ;
in which df = d% d5 T’ » G is the appropriate Green's function,
and I| is by (4-11) a solution of

Tors =AT, %fdf/K( 1 T T, (")

where

AlT,t) = fd‘f 'K r,tl"rim b(rlo
(g)
KTt oty = v ive Ve, el rie’) . |

is to be regarded as a known function. In what follows

r .
1= TT¢ 'ty ete., and ¢ will denote the combination of
variables (P,t).

One gpproach to solving (7) is-the method of iterations
(Page, sec. 9.2; Courant - Hilbert, Ch. 3. sec. 6). Choose any
finite continuous vector function as the zero order approximation
for 1T;' let it be called -"—o. Then the first-order approximation

for [ 1s
T = Ate) %jdj/K(fff/)W_gf/): (9)

T~ A +ﬁ§” Kisleh Acgh

+:J‘d§>'/ Kégffl) Tro(gl)

(10)

e ———
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where

Kz(g’lg') =fdg K SU’”) K(S”’g)ﬁ . . (11)

If this iteration process is continued Indefin{itely and we define
the iterated kernels

K (ele =fdj"K(gj§'3Kn_l(f”[g), n>2

(12)
! !
Kueleh = Keglgh,
there obtd ns for the nﬁg approximation
m-l
) = Ate) # 5 | ad Kitpleh Ateh)
Tr f ‘Y e=t 1151 S (13)

+Jd§,Kn (o Ig’)"np(\f’):.

It is shown in treatises on integral equation (Whittaker and
Watson, 1920, p. 222) that regardless of the choice of a trial
solutic ']ro, the last term in (13) approaches zero and the

series converges uniformly. Hence, the solution of (7) may be
had, in principle, to any desired degree of accuracy. If we

)
moreover, assume for simplicity that the serles of kernels

Lelgh = 2 Keleh e

also converges uniformly, the expression (/3) can be put in a
concise formg

—[f(g) = /\(g) *-fdg’l L(g lg’) /\(g/) . (15)

L;is called the reclprocal kernel,

A glance at (8) shows that if b('r,O) = 0 then
T (T,t) = 0, and from (6) there follows b (T,t) = 0. The
physical requirement thatP remain zero ir initially zero is
met by our solutions, and this istrue of div]B as well:

1t Ve B (T1,0) = 0 then V-B(T,t) = o. (16)

thwesrxe e S
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A
B. Condition (3) is not in general satisfied by solutions B
of equation (l)y at least it is not necessary to Impose (3) on
the quantityﬁ appearing in the partial integral (3-2). As 2
result the non-homogeneous term in (4) must be augmented by an
additional termf rom (2), giving

A A A A (A7)
SV B)+Vv-V(V-B) +V-(v- VB =vp?y.B).

Repeating the preceding steps for this equation shows that if
(e B l);‘wathen, nevertheless, +( V- V) B develops into
a source of +R , even if [( v - 78] £=0=C+

Solutions of the substantial diffusion equation
are divergence-free if and only if V«(V-V/)B = 0.
For the partial integral under the circumstances of
sectxons 3d and 3¢, however, it is not essential that
Ve B - 0, but rather that

A
V°.B = o, (18)

by virtue of (3-13). Consider the substantial diffusion
equation (1) in the form

~ A N
If B is expressed in lagrangian terms, BLT(To,t)‘,t—J =B(1°
then (19) may be written

Eoupt . (9h)
3/3t and 7° non commute and
%(VO.ﬁ) =vvV° V'R . (20)

To analyze this equation the mixed derivatives on the right

must be replaced by derivativesw ith respect to the Lagrangian
A

coordinatas, ro. VZ.B may be e xpressed as

s o s w»»»...‘:"_ [ Y N
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38 0
Bi 3 ‘ axk aBi)
EXJBX‘j 332:] ‘ 3'55:] 33:?{
0 22 2.0 2
e OBy T E 9By
o 0
axj ox axk ox Jaxj axk
0 0 24 2.0 a
= Ei{k ?_ﬁ 2 Bi +- 2 xk ..af%
0.0 i
axj axj axiaxk axjakj axk

We consider first the linear velocity shear of section

dc. The Lagranglan trajectories are

0
3

°, x, =x0 + (ax

byt =
o o + b)t. , X x

3

after (3-18) and (3-26); thus,

2
V2T0= VOT = 0

J
which reduces (21) to
2A
"B 2
3x ,3x k ) =5~ o
3773 akaxL
o) 2.
For 7 « 7°R we have
3D 3A
5] Bi _ V o V o 3 Bi
%3x ,d = VxR VR %0 3% 3%°
axi xj xj xk‘ xe xi

3”B
gy 2V V)
axkaxe a_xi

The following relations are easily obtained from (22)

chl) =€, Vxg=€,-at€,, Vx; =€ ;
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(23)

(24)

(25)

(26)
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in . in = ng . ng = 1
V) = Vxg s Vel - Vg =0 (27)
Vx; o Vx;‘ =1 +a°t°
ng . ng = - qt.
The last term in (25) vanishes, leaving
0 20 02(’V°°%)—2at Chi (V°-1/§)
V -V B=V " i axgaxg
: (28)
A
LB (poB,
3(xg)?
and (20) becomes
N 2 A 2 A
-1 3 0 T 0 o 0 o
° < = . : - 2 'b ( . ))
vt 2(V°-B) = v° (VR - 2a e~ VOB
2 A
+ o%t® 2 =2 ( V°.B). (29)
a(xg)

A 1
Note that in general 3(\y° B) /3t # b, however, when
t = O the equation is momentarily '

A 2 A
S(VOB) =v V° (V°-B).

Ks before, we see that if V<R = 0 initially, there is 1o
tendency for sources to develop, and we surmise that: VO.‘fB
remains thereafter zero. This inference 1s given added weight
by congsidering what happens when t 1is small but not zero.

The last term on the right of (29) can be ignored compared
with the first, and for t-—>0,

e o g 8 i St 4 e et By 1 e oAl B _ 50
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A 2 ~

vt (7% B L & (VOB

i
fye)
s
ct

Q)
Y
(o]
[ ]
L ]

(30)

For the sake of brevity we define the operators

a2 _ 3® a/z' _ 3%
- 0~..0 ? - o/ ~. o/
axzax6 . axz ax5

and let.P designate the combination of variables ('ro;t) while
o A
D(f)':v ’Bo

Equation (3) in this symbolism becomes

2 .
v° D -v'lg% = 2 A.t3°D. (31)

Comparing this with (4-1 ) and (4-14) we see that

2

D(p) =jd§/(}(§\y/)2a_ta/ D(f'p/) + v-lfds TO/(GD/)t =" (32)

Operatihg on this with with 82 glves an integral equation for
a2
D, viz.

2 / 2 /. ° / )

3 D(j)) = Cf(f) +jd5 2at o’ G(§|§)a D(Q ) (33)
where 5

- 2 .
Pp) =v ljd T° [;(a G)D'_]t = * (34)

It has a solution of the form

*nip) = ¢ p) **'fdj/M(f|§,)f$0(f/): (85)

after (IV-7) and (IV-15), M being the kernel reciprocal to

2Qt32G. As before, if

A
Dy = V2 B(T7,0) =0 (36)

then 7>(§) = 0 by (34), and consequently 82D =D =0 by

e i

R Enca N

APy




(35) and (32).
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Interpreting this result is not gquite so simple as before.

D 1s expressed in Lagrangian terms, so the partial time derivative

in (31) 1is equivalent to a substantial derivative; accordingly,

what we have shown 1s that 1f D(‘TO;O) = 0 then, subsequently,

D(T t) = 0 at a particle moving with the fluid. But, since this

must be true for all particles, we conclude that

A ' ,
V7°'13(1:?t) = 0 everywhere in the fluld and at all
times provided only VO'B('I‘SO); = 0

Equation (3-14) follows at once.
As regards the spproximate solutions of section 34,

(37)

the last terms of (21) and (25) are no longer zero., Nevertheless,

since \» is slowly varying, the curvature of the trajectories,
of which the second derivatives of the Lagrangian coordinates
in (21) and (25) are a measure, is very small, and the last
terms in these equations are negligible compared with the
first terms and may be dropped, leading once again to (29).

C. It remains to treat the divergence criteria for the
solutions of section 3c. The essential steps are exactly
the same as in A of this appendix. Taking the divergence of
(4-18b) shows that

v i e V(V-F)

1l

Vz(\_ﬁf-:) w kEV.F

provided

Ve (F-V)¥ =0,

(38)

(39)

v v v
Thus we let § represent either F or Y+F and f either For V-F.

Then from (4-24) and (4-25),
4 \ /
fofot [ roc o

and

(40)

(41)

v /
(V-V):f = (VoV)f »v"lj\dST/(V'VG)-(\/{ V/)f,

TR I

e ot

=
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=40~

which have precisely the same forms as (6) and (7), respectively.
We may state at once that 1if = 0 then both (\/* V)f and fvanish.
z Once a particular solution of the homogeneous eguation 1s selected,
F' is given by (40), and this fixes the form of V«F ¢ it is
that for which the "inhomogeneous™ term is Vo « And

if [7-I»'“v =0 then V.F = 0. (42)

This leads to eguation @-30).

D. From the physical and mathematical analyses of the
"minhomogeneous™ differential equations studied in this appendix,
we hazard a generallzation. Consider an equatlon of the form

VEA - B LA,

where A (7,t) is an arbitrary vectory function and OZ deno tes
an operator linear in the space derivatives. If A( ¥,0) =0
we assert that since,@/\(’r‘,o) = 0, a result corresponding to
(15), there are initially no sources for A , and moreover,
because of this there 1s no tendency to generate sources.
Whenever the latent "sources," -%A, depend on A in such a
way that they are zero when A 1is everywhere zero, they are
given no chance to develop, and the quantity A , ONce zero
remains zero thereafter.
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